Bachelor of Engineering in Chemical Engineering

Chemical engineers create, design, and improve processes and products that are vital to our society. Today’s high technology areas of biomedicine, electronic device processing, ceramics, plastics, and other high-performance materials offer problems that require innovative solutions provided by chemical engineers.

Considered to be one of the most diverse fields of engineering, the opportunities afforded chemical engineers are equally diverse: research and development, design, manufacturing, marketing and management. A variety of industries are served by chemical engineers, including energy, petrochemical, pharmaceutical, food, agricultural products, polymers and plastics, materials, semiconductor processing, waste treatment, environmental monitoring and improvement, and many others. There are career opportunities in traditional chemical engineering fields like energy and petrochemicals, but also in biochemical, pharmaceutical, biomedical, electrochemical, materials, and environmental engineering.

Program Description

The chemical engineering program at Stevens is based on the fundamental areas of chemical engineering science that are common to all of its branches. Courses in organic and physical chemistry, biochemical engineering and process control are offered in addition to chemical engineering core courses in thermodynamics, fluid mechanics, heat and mass transfer, separations, process analysis, reactor design, and process design. Thus, the chemical engineering graduate is equipped for the many challenges facing modern engineering professionals. Chemical engineering courses include significant use of modern computational tools and computer simulation programs. Qualified undergraduates may also work with faculty on research projects. Many of our graduates pursue advanced study in chemical engineering, bioengineering or biomedical engineering, medicine, law, and many other fields.

The Bachelor of Engineering in Chemical Engineering program is accredited by the Engineering Accreditation Commission (EAC) of the Accreditation Board for Engineering and Technology (ABET).

Concentrations

Currently, no concentrations are offered for the Chemical Engineering undergraduate program.

Minors

Program Objectives and Outcomes

The mission of the chemical engineering program is to educate technological leaders by preparing them for the conception, synthesis, design, testing, scale-up, operation, control and optimization of industrial chemical processes that impact our well-being. 

As the program educational objectives, graduates of the Stevens Bachelor of Engineering in Chemical Engineering are expected to:

  • Apply mathematics, science and maturity of experience to lead in the solution of complex problems in chemical engineering.
  • Demonstrate broad-based skills and understanding of problem solving, ethics, social awareness, safety, communication, teamwork and leadership to excel as recognized leaders in their profession.

To accomplish this, the undergraduate program provides a balanced education in fundamental principles, design methodologies, and practical experiences in chemical engineering, general engineering, and physical and mathematical sciences topics through which graduates can enter and sustain lifelong professional careers of engineering innovation and creativity.

Graduates of the chemical engineering program will:

  • Be recognized as innovative technical experts who demonstrate advanced understandings of the state-of-the-art in chemical engineering, as well as their professional, social, and ethical responsibilities.
  • Emerge as technical leaders through their own individual contributions and their abilities to work with and influence others.
  • Function as effective entrepreneurs who nurture innovative technologies from concept to commercialization.

Qualified undergraduates may work with faculty on research projects. Many of our graduates pursue advanced study in chemical engineering, bioengineering or biomedical engineering, medicine, law, and many other fields.

Students Outcomes

By the time of graduation, chemical engineering students will have:

  1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
  3. An ability to communicate effectively with a range of audiences
  4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies
  8. A fundamental knowledge and an appreciation of the technology and business processes necessary to nurture new technologies from concept to commercialization

Chemical Engineering Curriculum

Term I

CAL 103Writing and Communications Colloquium

3

CH 115General Chemistry I

3

CH 117General Chemistry Laboratory I

1

ENGR 111Introduction to Engineering Design & Systems Thinking

4

ENGR 116Intro to Programming & Algorithmic Thinking

3

MA 121Differential Calculus

2

MA 122Integral Calculus

2

Term II

CAL 105CAL Colloquium: Knowledge, Nature, Culture

3

CH 116General Chemistry II

3

CH 118General Chemistry Laboratory II

1

ENGR 122Field Sustainable Systems with Sensors

2

MA 125Vectors and Matrices

2

MA 126Multivariable Calculus I

2

MGT 103Introduction to Entrepreneurial Thinking

2

PEP 111Mechanics

3

Term III

CHE 210Process Analysis

3

ENGR 211Statics and Introduction to Engineering Mechanics

4

ENGR 245Circuits and Systems

3

MA 221Differential Equations

4

PEP 112Electricity and Magnetism

3

Term IV

BIO 181Biology and Biotechnology

3

CHE 233Chemical Engineering Thermodynamics I

3

ENGR 212Design of Dynamical Systems

4

ENGR 241Probability and Statistics with Data Science Applications

4

MA 225Infinite Series

2

MA 226Multivariable Calculus II

2

Term V

CHE 332Separation Operations

3

CHE 333Chemical Engineering Thermodynamics II

3

CHE 336Fluid Mechanics

3

ENGR 311Design with Materials

4

HUM Humanities

3

Term VI

CHE 322Engineering Design VI

3

CHE 342Heat and Mass Transfer

3

CHE 345Process Control, Modeling and Simulation

3

CHE 351Reactor Design

3

IDE 399Engineering Economics & Project Management

2

HUM Humanities

3

Term VII

CH 243Organic Chemistry I

3

CH 245Organic Chemistry Lab I

1

CHE 423Engineering Design VII

3

CHE 432Chemical Engineering Laboratory

2

IDE 401Senior Innovation II: Value Proposition

1

T.E. Chemistry Technical Elective

3

HUM Humanities

3

Term VIII

CHE 424Engineering Design VIII

3

IDE 402Senior Innovation III: Venture Planning and Pitch

1

G.E. General Elective

3

G.E. General Elective

3

T.E. Chemistry Technical Elective

3

HUM Humanities

3

Notes:

(1) Technical Electives: Two technical electives (3 or 4 credits each) must be selected can be selected from the following list of courses:

(2) General Electives can be selected from available courses offered by programs in SES, SSE, SOB and HASS (including CHE courses). Approval from the student’s advisor and the course instructor may be required.

(3) Humanities: Please see Humanities Requirements for specific requirements.